22 febrero, 2018 - General - Comentar -

Concursos de Fotografía

Deja un comentario

Collision of water droplets

18 diciembre, 2016 - Colision de gotas de agua - 2 Comentarios -

      First, say, that this tutorial is the result of a long tour of instruments (drippers, timed relays, Arduino boards), techniques, devices, methods, tests, queries and a long etc. Which have resulted in what I am going to show here.


      A simple hospital dropper that dropped drops of water on a regular basis at indeterminable intervals of time, was as I began. With this method, I obviously could not adjust the drip time or the size of the drop of water. Little by little, investigating and asking people who were far ahead of this was the way to capture with the camera the collisions of water droplets.


Indeed, doing this type of photography requires a lot of patience but also a varied endowment of means to be able to capture that magical moment that the eye is unable to retain.


If you can afford it, I would advise you to have a space dedicated just to make these photographs, since mounting and dismantling takes time so it is convenient to mount it and to have it there just for this.


What I intend with this tutorial is to give you the starting point to take photos of drops collisions and from here, either by modifying values of height, times, water densities, etc. experience and get incredible photos.





Most are made with a Canon 40D.


Of a time to this part I do with a Canon 5D Mark III.

Usually the exposure times are very long, which causes a significant noise in the photos but the 5D has a very good treatment of noise, which improves the quality of the photo incredibly.




You can choose the lens you want (as long as it is not an angle), I use the Canon EF 100mm f / 2.8 USM Macro.


We all know that the sharpness provided by a macro over short distances is not obtained with another type of lens. The problem with which we find is that the depth of field is very small and that is why I always make these photos with a fairly closed diaphragm between f / 14 to f / 22.



Since the diaphragm is very closed for the reason I explained earlier, it would be logical to think that the flash illumination should be at maximum power to compensate for such a small light input. Nothing is further from reality. If the flash we put to the maximum power, the time of light is too long to freeze the image and this one would leave us moved. Therefore I use two or three flashes at a power of 1/32, 1/64 and even 1/128. What we get with this is to have enough light so that the photo does not come out dark and with a very small light time with which the photo will freeze.



     It should be noted that this type of photography is made, as I say, only with the light of the flashes while the camera mirror is raised. And this is why the shutter speed is NOT a determining factor, but it is the time that the flashes are illuminated. That yes, the room must be dark or dim to avoid undesirable lights.



     We have to think very well what flashes to buy because the price would have to be multiplied by two or three according to the number of flashes we are going to use.



     There are those who have the Yongnuo Speedlite YN560-II and say they do very well.

     I bought a Vivitar 285 to which I made a modification to be able to vary the intensity to my liking.


In this link I leave the instructions to make these modifications:

(It was sent to me by Markus Reugels and does not have it translated.)



The StopShot controller is the device I use to control all dripping elements, flashes and even the camera trigger.

      Of the configuration of the times will depend the success of the collision of drops.

      This controller has an input for the infrared sensor (which I show below) and three RCA outputs where I connect the solenoid valve, the flashes and also the camera.

      It also has a microphone input. Sometimes the time counting, we need to be done by sound instead of by cutting a beam of infrared rays, but this would be for other types of photographs.


StopShot Controller


The drops are produced by the opening of a precision solenoid valve which is about 55 cm high. This height is variable, you will have to do multiple tests until you find the height in which you produce the effects that you want.

      The opening time of the solenoid valve, of course, is configurable. The more milliseconds of opening, the bigger the drop of water.

      The solenoid valve is this:


solenoid valve

And it is the one that you have to screw in the siphon of Mariotte:


siphon of Mariotte


The function of the siphon of Mariotte is to always maintain the same pressure in the water tank even if this is gradually emptying.



      The next element is an infrared sensor:




When the solenoid valve releases a drop of water, we pass it through the sensor arc which sends the information of the exact position of the drop of water as it falls to the controller to begin the cycle we have programmed.



Of course, these last three elements, can be placed in a tripod with a support thought for it.




      If we did these photos with only water, the moment of the collision would be an endless number of microdrops that would not give us the result we expect. Therefore I add between two and three capsules of guar gum per liter of water. (This is variable and to your liking):



The guar gum gives the water a sufficient viscosity so that it does not "break" the drop of water when colliding with the column that creates the first one when falling.

      To mix the guar gum with water, I advise you to dissolve the capsules separately in a little alcohol and then throw it into the water. This will avoid problems with lumps.

      Once mixed, you will have to strain it with a cloth or a fabric strainer to remove the turbidity.

      The color is given with food coloring:


When I want to make two color collisions, what I do is put a dye in the water of the siphon of mariotte and another color in the water of the container below. With this we obtain that the column up that creates the first drop is of one color and the second drop, that is the one that collides against the column, of another one.







      Focus is an important point and you have to be constantly watching. Of course, the objective you have to put the manual. I use one of these two elements as an aid to the focusing:



The one on the left is the tip of a silicone cartridge to which I screwed a screw and the one on the right is a very thin tube attached to a solid and heavy base.

      Once you have everything installed (Controller, valve with siphon, water, container where the drops fall) you will have to drop a drop of water so that it hits just the tip of the screw or the thin tube, and once you have Achieved, you'll have to make a focus adjustment as accurate as possible right there.

      From here, obviously you can no longer move the tripod. Keep in mind that it is easy to stumble with a paw and goodbye to focus. I tell you from personal experience. However, it is necessary to be constantly monitoring the approach. It's fundamental.



      Other elements that will be very useful to you are the pressure clamps and / or the sergeants. Always hold paperboards, plexiglass plates, cables, etc.








Diagram of a typical setup

(1) Remote flash trigger (emitter)

(2) Container full of water

(3) White opaque plexiglass sheet

(4) Flashes

(5) Remote Shutter Receiver

(6) Water tank with siphon from Mariotte

(7) Solenoid valve nozzle

(8) Precision Solenoid Valve


As I told you at the beginning, this tutorial is a starting point and of course, the diagram I show you can vary it to your liking.

      The setup of this diagram would result in this type of photo:


While the camera in Bulb mode is triggered for approximately 0.5 seconds, at the time the collision occurs, the flashes that pass through the opaque white plexiglass plate that works as a light window are triggered.



     You can go playing with the position of the flashes and the position of the camera to obtain different results. Even in many cases it is advisable to illuminate the collision sideways so we will have to distribute the flashes around the container where the collisions occur.



     You will observe in the diagram that to avoid too much wiring I use a remote flash trigger (1) with receivers in each of the flashes (5).



     The StopShot comes with a manual where it explains perfectly its operation and the way of putting the different Triggers (exits for solenoid valve, flash, camera), like saving a configuration, etc. So I will not dwell on it.

     If you want to have a look, the link to the manual is this:




- Starting from the base we have the siphon filled with water with guar paste, the flashes connected, the StopShot on, the manual trigger connected to the camera, the focus well done, etc.



     - Firstly, I place the solenoid valve perfectly vertical, this is important because otherwise the columns will not be vertical (they will lean towards one side) with which the collision will not occur.



     - The distance between the lower tip of the nozzle (7) and the surface of the water in the container (2) is 54 cm.



     - The distance between the lower tip of the nozzle (7) and the infrared sensor is 13 cm. (The diagram does not show the sensor)


     - On Trigger 1 of the StopShot, connect the solenoid valve.



     - On the Trigger 2 of the StopShot I connect the remote flash trigger. In the diagram, the trigger is placed on the camera. We would have to make an RCA-flash shoe cable to place the trigger here.



     - Program the StopShot as follows:

          T1 --------------> Manual (For the driver to wait for the Up / Down button to be pressed)

          #PULSE --------> 2 (Number of solenoid valve openings 2 drops)

          PULSE 1 --------> 50.0 ms (First opening of solenoid valve, first drop)

          TOFF 1 ---------> 76 ms (76 millisecond wait)

          PULSE 2 --------> 25.0 ms (Second opening of solenoid valve, second drop)

          TOFF 2 ---------> 16.0 ms (Default)

          T2 --------------> 275 ms (Standby time of 275 milliseconds and flash fires)



     - The camera would shoot me with a manual trigger. The trigger sequence would be:

          1) With the camera in Bulb shoot with the manual trigger.

          2) Press the Up / Down button to execute what we have programmed.

          3) Release the manual release



     - Admire your creation



All these values are orientative and you will have to change them quite frequently. Keep in mind that working with time values so small, any environmental condition can cause you to have to modify some values that in principle were working well but suddenly stop. It's a lot of patience and trial / error work.





      I have a tutorial for adjusting the sharpness in Photoshop in which there is a video of Markus Reugels that does this same thing I just told you but with three solenoid valves and another controller, look at it, it is interesting to illustrate more this tutorial. The link is this:




  *** (If you have arrived here, leave me a comment giving me your opinion, whether you liked it or not.


Enrique Izquierdo


Deja un comentario

Colisión de gotas de agua

05 abril, 2016 - Colision de gotas de agua - 25 Comentarios -

     En primer lugar, decir, que este tutorial es el resultado de un largo recorrido por instrumentos (goteros, relés temporizados, placas Arduino), técnicas, aparatos, métodos, pruebas, consultas y un largo etc. que han dado como resultado lo que aquí os voy a mostrar.


     Un simple gotero que soltaba gotas de agua de forma regular a intervalos de tiempo indeterminables, fué como empecé. Con este método, obviamente no podía ajustar el tiempo de goteo ni el tamaño de la gota de agua. Poco a poco, investigando y preguntando a gente que estaba muy por delante de esto fué la manera de captar con la cámara las colisiones de gotas de agua.


     El mayor problema estaba en conseguir soltar gotas de agua en el punto exacto y en el momento exacto, al tiempo que se dispare la cámara y se disparen también los flashes en el momento justo. (más tarde explicaré porqué digo flashes y no flash)


     Efectivamente, hacer este tipo de fotografía requiere mucha paciencia pero además también una variada dotación de medios para poder lograr captar ese momento mágico que el ojo es incapaz de retener.


     Si te lo puedes permitir, te aconsejaría disponer de un espacio dedicado solo para hacer estas fotografías ya que montar y desmontar todo lleva su tiempo por lo que es conveniente montarlo y poder tenerlo ahí sólo para esto. 

     Lo que pretendo con este tutorial es darte el punto de partida para hacer fotos de colisiones de gotas y que a partir de aquí, ya bien sea modificando valores de altura, tiempos, densidades del agua, etc experimentes y obtengas fotos increíbles.





     La mayoría están hechas con una Canon 40D.



     De un tiempo a esta parte las hago con una Canon 5D Mark III.

     Normalmente los tiempos de exposición son muy largos, lo que provoca un ruido importante en las fotos pero la 5D tiene un tratamiento buenísimo del ruido, lo que mejora increíblemente la calidad de la foto.



     Puedes elegir el objetivo que quieras (siempre que no sea un angular), yo utilizo el Canon EF 100mm f/2.8 USM Macro. 

     Todos sabemos que la nitidez que proporciona un macro en distancias cortas no se obtiene con otro tipo de objetivo. El problema con el que nos encontramos es que la profundidad de campo es muy pequeña y es por lo que yo siempre hago estas fotos con un diafragma bastante cerrado entre f/14 a f/22.




     Puesto que el diafragma lo pongo muy cerrado por la razón que he explicado antes, sería lógico pensar que la iluminación por flash debería ser a la máxima potencia para compensar esa entrada de luz tan pequeña. Nada más lejos de la realidad. Si el flash lo ponemos a la máxima potencia, el tiempo de luz es demasiado largo para congelar la imagen y ésta nos saldría movida. Por tanto yo utilizo dos o tres flashes a una potencia de 1/32, 1/64 y hasta de 1/128. Lo que conseguimos con esto es tener la suficiente luz para que la foto no nos salga oscura y con un tiempo de luz muy pequeño con lo que la foto se congelará.

     Hay que tener en cuenta que este tipo de fotografía está hecha, como yo digo, solamente con la luz de los flashes mientras que el espejo de la cámara está levantado. Y es por lo que la velocidad de obturación NO es un factor determinante pero SI el tiempo que los flashes están iluminados. Eso si, la habitación debe estar oscura o en penumbra para evitar luces indeseables.

     Tenemos que pensar muy bien qué flashes comprar porque el precio habría que multiplicarlo por dos o por tres según la cantidad de flashes que vayamos a utilizar.

     Hay quien tiene los Yongnuo Speedlite YN560-II y dicen que les van muy bien.

     Yo compré unos Vivitar 285 a los que les hice una modificación para poder variar la intensidad a mi gusto.

     En este enlace te dejo las instrucciones para hacer estas modificaciones:

     (Lo siento, me lo envió Markus Reugels y no lo tiene traducido.)





     El controlador StopShot es el aparato que utilizo para gobernar todos los elementos de goteo, flashes y hasta el disparo de la cámara. 

     De la configuración de los tiempos va a depender el éxito de las colisiones de gotas.

     Este controlador dispone de una entrada para el sensor de rayos infrarojos (que te lo muestro más abajo) y tres salidas RCA en dónde conecto la electroválvula, los flashes y también la cámara.

     También tiene una entrada de micrófono. En ocasiones, el conteo de tiempo, necesitamos que se haga por sonido en vez de por corte de un haz de rayos infrarojos, pero esto sería para otro tipo de fotografías.


controlador StopShot

     Las gotas se producen por la apertura de una electroválvula de precisión que sitúo a unos 55 cm de altura.  Esta altura es variable, tendrás que hacer múltiples pruebas hasta encontrar la altura en la que se producen los efectos que tú deseas.

     El tiempo de apertura de la electrovávula, por supuesto, es configurable. Cuantos más milisegundos de apertura, más grande será la gota de agua.

     La electroválvula es esta:


    Y es la que tienes que enroscar en el sifón de Mariotte:


sifón de Mariotte

     La función del sifón de Mariotte es mantener siempre la misma presión en el depósito del agua aunque este se vaya vaciando poco a poco.

     El siguiente elemento es un sensor de rayos infrarojos:


Cuando la electroválvula suelta una gota de agua, ésta la hacemos pasar por el arco del sensor el cual envía la información de la posición exacta de la gota de agua al caer al controlador para que éste comience el ciclo que le hayamos programado.



Por supuesto, estos últimos tres elementos, pueden ser colocados en un trípode con un soporte pensado para ello.





     Si hiciésemos estas fotos con sólo agua, el momento de la colisión sería un sinfín de microgotitas que no nos darían el resultado que esperamos. Por tanto yo añado entre dos y tres cápsulas de goma guar por cada litro de agua. (Esto es variable y a tu gusto):

goma guar


     La goma guar le da al agua una viscosidad suficiente como para que no se "rompa" la gota de agua al chocar con la columna que crea la primera al caer. 

     Para mezclar la goma guar con el agua, te aconsejo que disuelvas aparte las capsulas en un poco de alcohol y después lo eches al agua. Esto te evitará problemas con los grumos.

     Una vez mezclado, tendrás que colar con un paño o con un colador de tela para quitarle la turbieza.

     El color se lo doy con colorante alimentario:


colorante alimentario

Cuando quiero hacer colisiones de dos colores lo que hago es poner un colorante en el agua del sifón de mariotte y otro color en el agua del recipiente de abajo. Con ello conseguimos que la columna hacia arriba que crea la primera gota sea de un color y la segunda gota, que es la que choca contra la columna, de otro.



     El enfoque es un punto importante y hay que estar vigilándolo constantemente. Por supuesto, el objetivo lo tendrás que poner el manual. Yo utilizo uno de estos dos elementos como ayuda para el enfoque:

ayuda para enfoque

     El de la izquierda es la punta de un cartucho de silicona al que le he enroscado un tornillo y el de la derecha es un tubo muy fino adherido a una base sólida y pesada.

     Una vez ya tengas montado todo (Controlador, válvula con sifón, agua, recipiente donde caen las gotas) tendrás que dejar caer una gota de agua de manera que impacte justo en la punta del tornillo o en el fino tubo, y una vez lo hayas conseguido, tendrás que hacer un ajuste del enfoque lo más preciso posible justo ahí.

     A partir de aquí, obviamente ya no puedes mover el trípode. Ten en cuenta que es fácil tropezar con una pata y adiós al enfoque. Te lo digo por propia experiencia. De todas formas, es necesario estar constantemente vigilando el enfoque. Es fundamental.

     Otros elementos que te serán de mucha utilidad son las pinzas de presión y/o los sargentos. Siempre hay que sujetar cartulinas, placas de plexiglas, cables, etc.

pinzas de presion 










Diagrama de un montaje típico

     (1)  Disparador remoto de flash (emisor)

     (2)  Recipiente lleno de agua

     (3)  Lámina de plexiglass blanco opaco

     (4)  Flashes

     (5)  Receptores del disparador remoto

     (6)  Depósito de agua con sifón de Mariotte

     (7)  Boquilla de la electroválvula

     (8)  Electroválvula de precisión

     Como te dije al principio, este tutorial, es un punto de partida y por supuesto, el diagrama que te muestro lo puedes variar a tu gusto.

     El montaje de este diagrama daría como resultado este tipo de foto:


     Mientras la cámara que está en modo Bulb se dispara aproximadamente 0,5 segundos, en el momento en que se produce la colisión, se disparan los flashes que atraviesan la placa de plexiglass blanco opaco que trabaja a modo de ventana de luz.

     Puedes ir jugando con la posición de los flashes y la posición de la cámara para obtener diferentes resultados. Incluso en muchas ocasiones conviene iluminar lateralmente la colisión por lo que tendremos que distribuir los flashes alrededor del recipiente donde se producen las colisiones.

     Observarás en el diagrama que para evitar demasiado cableado yo utilizo un disparador de flash remoto (1) con receptores en cada uno de los flashes (5). 

     El StopShot viene con un manual en dónde explica perfectamente su funcionamiento y el modo de cómo poner los diferentes Triggers (salidas para electroválvula, flash, camara), como salvar una configuración, etc. por lo que no voy a extenderme en ello.

     Si quieres echar un vistazo, el enlace al manual es este:



     - Partimos de la base que tenemos el sifón lleno de agua con goma guar, los flashes conectados, el StopShot encendido, el disparador manual conectado a la cámara, el enfoque bien hecho, etc.

     - En primer lugar, coloco la electroválvula perfectamente vertical, esto es importante pues de lo contrario las columnas no serán verticales (se inclinarán hacia un lado) con lo que la colisión no se producirá.

     - La distancia entra la punta inferior de la boquilla (7) y la superficie del agua en el recipiente (2) es de 54 cm.

     - La distancia entre la punta inferior de la boquilla (7) y el sensor de rayos infrarojos es de 13 cm. (en el diagrama no aparece el sensor)


     - En el Trigger 1 del StopShot conecto la electroválvula.

     - En el Trigger 2 del StopShot conecto el disparador remoto de flash. En el diagrama, el disparador, está puesto sobre la cámara. Tendríamos que fabricar un cable RCA-zapata de flash para colocar aqui el disparador.

     - Programar el StopShot asi:

          T1 --------------> Manual   (Para que el controlador espere a que se pulse el botón Up/Down)

          #PULSE --------> 2  (Número de aperturas de la electroválvula. 2 gotas)

          PULSE 1 --------> 50.0 ms  (Primera apertura de la electroválvula. Primera gota)

          TOFF 1 ---------> 76 ms  (Espera de 76 milisegundos)

          PULSE 2 --------> 25.0 ms  (Segunda apertura de la electroválvula. Segunda gota)

          TOFF 2 ---------> 16.0 ms  (Por defecto)

          T2 --------------> 275 ms   (Tiempo de espera de 275 milisegundos y se dispara el flash)

     - La cámara la dispararía yo con un disparador manual. La secuencia de disparo sería:

          1) Con la cámara en Bulb disparar con el disparador manual.  

          2) Pulsar el botón Up/Down para que se ejecute lo que hemos programado.

          3) Soltar el disparador manual

     - Admira tu creación

     Todos estos valores son orientativos y los vas a tener que ir cambiando con bastante frecuencia. Ten en cuenta que el hecho de trabajar con valores de tiempo tan pequeños, cualquier condición ambiental puede hacer que tengas que modificar unos valores que en principio te estaban funcionando bien pero que de repente dejan de hacerlo. Es un trabajo de mucha paciencia y de prueba/error.     

     Tengo un tutorial para el ajuste de la nitidez en Photoshop en el cual hay un video de Markus Reugels que hace esto mismo que te acabo de contar pero con tres electroválvulas y con otro controlador, míralo, es interesante para ilustrar más este tutorial. El enlace es este:


 ***(Si has llegado hasta aquí, déjame un comentario dándome tu opinión,tanto si te ha gustado como si no. Gracias)***


Enrique Izquierdo

Deja un comentario

Fotografía HDR

19 marzo, 2016 - HDR - Comentar -

Fotografía HDR


Todos sabemos que la pupila del ojo humano se dilata y se contrae constantemente cuando estamos mirando a nuestro alrededor. Cuando miramos a una zona o un objeto que tiene mucha iluminación esta se contrae, en cambio, se dilata si la iluminación es pobre o es oscura.


     Para poder entender bien lo que es la fotografía HDR es necesario hacer mucho hincapié en que este proceso que hace el ojo humano, lo hace porque el ojo solo puede mirar a un punto a la vez y no a un entorno como lo hace la cámara fotográfica. Por este motivo la pupila está constantemente variando de tamaño.

     Haciendo una analogía con el diafragma de la cámara fotografica, podemos decir que, mediante el fotómetro que la cámara lleva incorporado y que mide la cantidad de luz que entra, el diafragma se dilatará/abrirá o se contraerá/cerrará dependiendo de la cantidad de luz que "ve" en el momento de disparar. 



     El "problema" con el que nos encontramos a la hora de hacer una fotografía es que, puesto que el fotómetro hace una única medición de luz (sea puntual o ponderada), éste fijará un valor para el diafragma que será el mismo para todos los puntos de la toma, ya bien sean muy claros o muy oscuros. Por tanto este diafragma será adecuado para algunos puntos de la toma pero demasiado abiertos o demasiado cerrados para otros, por lo que para aquellos puntos en los que el diafragma sea el correcto la imagen se verá bien, pero en aquellos para los que el diafragma debería estar más cerrado, la imagen nos saldrá sobreexpuesta o demasiado clara o "quemada" y por el contrario, en aquellos puntos en los que el diafragma debería estar más abierto porque las condiciones de iluminación son pobres, nos saldrá esa zona subexpuesta, demasidao oscura o directamente negra. 


     Lo que intenta hacer la técnica HDR es precisamente "corregir este problema", haciendo que tanto las zonas claras, medias y oscuras se vean perfectamente bien en cuanto a iluminación en una fotografía, lo cual lo hace un tanto irreal. Pero esto es precisamente a mi juicio, lo que hace atractiva a la fotografía HDR.

     Por tanto, para hacer una fotografía HDR, yo hago entre cinco y nueve fotografías obviamente dejando entrar mas luz para obtener las zonas oscuras y menos luz para obtener las claras.

     En una cámara fotográfica, nosotros podemos hacer esto de dos formas:

     - Dejando fija la velocidad de obturacion ( o sea el tiempo que está abierta la cortinilla) y variando el diafragma, más abierto para que entre más luz.

     - Dejando el diafragma fijo y variando la velocidad de obturación. A más tiempo con la cortinilla abierta entrará mas cantidad de luz y viceversa.

     Cualquiera de las dos opciones valdría, pero, en HDR, utilizamos la segunda, o sea, variando la velocidad de obturación por el motivo que comento a continuación:

Diafragma más abierto=menos profundidad de campo
Diafragma mas cerrado=más profundidad de campo

     Puesto que el trabajo lo vamos a hacer con varias fotos iguales, iguales pero con diferentes iluminaciones, aparte de utilizar un tripode para que las fotografías nos salgan exactas en cuanto al fotograma se refiere, necesitamos que todo lo que en una toma nos salga nítido y enfocado también nos salga nítido y enfocado en todas las demás. Y esto sólo lo podemos conseguir manteniendo la misma apertura de diafragma en todas ellas puesto que si lo variamos, nos varía la profundidad de campo o franja en la cual la imagen captada es nítida.

     Por tanto no nos queda otra opción que variar la velocidad de obturación. Realmente, como tendremos la cámara en un trípode, la velocidad de obturación no nos importará demasiado, pero sí el diafragma que usemos.

     Hay que tener en cuenta que si lo que vamos a fotografiar es un paisaje tendremos que poner un diafragma muy cerrado para que la profundidad muy grande y así poder obtener nítido hasta el horizonte. Adicionalmente, y si ponemos un diafragma cerrado, es posible que tengamos que poner tiempos de exposición muy altos (1 seg., 1/2 seg. etc) que a efectos de movimiento de cámara no nos afecta como ya he dicho pero posiblemente si que nos afecte en cuanto a que la fotografía sacará más "ruido" cuanto más tiempo le pongamos.


Ejemplo de fotografía con ruido en exposiciones largas

Para hacer fotografías HDR cuento con el siguiente material para hacer las fotografías que luego en casa procesaré:

                   Trípode, Disparador manual y por supuesto una cámara.



Y para hacer el proceso HDR cuento con Photomatix y Photoshop. (Versiones a gusto de cada cual.)







Para este tutorial he elegido esta foto:



Toma de fotografías:

Hice seis disparos con la cámara sobre el trípode y con el disparador manual por cable.
Los datos de las seis tomas, excepto la velocidad, que la pongo debajo de cada una, fueron los siguientes:

Cámara: Canon EOS 40D
Objetivo: Sigma 10-20mm
Distancia focal: 14mm
Diafragma: f/16
Prioridad: apertura

1/200 sec



1/100 sec

1/50 sec

1/25 sec.

1/13 sec

1/6 sec



     El día estaba bastante nublado como podeis ver. La primera foto sale muy oscura debido a que, aunque una velocidad de 1/200 es una velocidad muy normal, utilicé un diafragma fijo de f/16 para obtener mucha profundidad de campo cuando, posiblemente, para que la foto hubiera salido bien de luminosidad, hubiera sido necesario poner un f/5.6

     Cuando hacemos una serie de fotografías como estas se conoce por el nombre de "horquillado" o "bracketing".

     La mayoria de las cámaras digitales réflex SLR disponen de un sistema por el cual nosotros podemos poner los valores mínimos y máximos de exposición y, dependiendo de la marca y modelo, hacemos disparos consecutivos y la cámara sola nos va haciendo las diferentes tomas que veis aquí arriba. En este caso se llama "horquillado automático" o "autobracketing".

     Para mayor comodidad, la cámara se puede poner en modalidad de ráfaga, aunque los puritanos dicen que no se debe hacer así porque cada vez que se efectua un disparo debemos esperar unos segundos para que la cámara deje de moverse puesto que el movimiento que produce el espejo cuando se levanta y la cortinilla puede repercutir en el siguiente disparo debido a un microbalanceo que se produce. (Esto lo dejo a gusto de cada cual) 

     Para este trabajo puse un horquillado de tres disparos (que es lo máximo que me permite mi cámara) separados por una diferencia de exposición de 1 punto entre foto y foto, y con la cámara en modalidad de ráfaga.

     Una vez hechas las tres primeras y con mucho cuidado giré la rueda de las velocidades hasta llevar la marca del fotómetro 1 punto por encima de la última foto hecha e hice las tres restantes.

     Este mismo proceso lo podríamos haber hecho con dos, tres, cuatro,..veinte... las que queramos, desde una fotografía totalmente negra, hasta una totalmente blanca aunque luego no las utilicemos, de hecho, yo personalmente no suelo utilizar todas las que hago.

     Una vez que tenemos las fotografías, ya sólo nos queda hacer el proceso de obtener la foto HDR siguiendo los siguientes pasos:

     1.- Abrimos nuestro Photomatix y seleccionamos las fotos con las que vamos a tratar, File>Open,  marcamos los ficheros, y pulsamos Abrir:

     En primer lugar yo abro todas las fotos de la serie y hago todo el procedimiento que sigue a continuación. No obstante, suelo repetirlo pero seleccionando sólo algunas fotos en lugar de todas. Por ejemplo con la 1ª, 3ª y 5ª o con la 2ª, 4ª y 6ª o lo que se me antoje y hacer el procesado con ellas. Hay que saber que en este postprocesado se juega mucho con la prueba-error hasta conseguir lo que buscamos, por eso es necesario tomarselo con paciencia y tiempo por delante para poder hacer cuantas más pruebas mejor.

     2.- A continuación hacemos: HDR>Generate>Marcamos Use opened images>OK
     En alguna ocasión, es posible que al pulsar OK nos aparezca una pantalla similar a esta:


     La explicación es que partiendo de que 0 es la exposición correcta, Photomatix espera que el intervalo de exposiciones sea la misma para todas las fotos, tanto para las subexpuestas (valores en negativo) como para las sobreexpuestas (valores positivos).

     En el caso de que no sea así nos saldrá esta ventana mostrandonos lo que Photomatix cree, en donde se nos permitirá variar los valores si consideramos que Photomatix no lo ha interpretado bien o dejándolo como nos lo muestra si realmente es correcto.

     En cualquier caso pulsaremos OK.


3.- Nos aparece esta ventana:


     Yo suelo dejarla como está y pulsar OK. Dejando tildado Align source images hacemos que Photomatix corrija cualquier pequeño defecto de alineamiento que haya entre todas las fotos seleccionadas. Si hemos hecho tomas en las que hay objetos o personas en movimiento, lógicamente entre toma y toma estos habrán cambiado de lugar, en cuyo caso tildaremos también Attempt to reduce ghosting artifacts.


     4.- Tras pulsar OK en la ventana anterior, nos aparece una nueva ventana con nuestra foto HDR:


     5.- Si movemos el cursor por nuestra foto, podremos ver en la pequeña ventana HDR Viewer como quedará la fotografía en todas sus zonas después de hacer en siguiente paso Tone Mapping. Si nos parece que queda demasiado clara o demasiado oscura podemos subir o bajar la exposicióncon HDR>Adjust View>Exposure Up F12 para aumentar la exposición o Exposure Down F11 para disminuirla. Generalmente no hay que hacer nada por lo que seguiremos con el siguiente paso.


     6.- Ahora accederemos al último paso que es el Tone Mapping. Pulsamos HDR>Tone Mapping y nos sale la siguiente ventana:


     ...y aquí querid@s amig@s, os dejo a vuestra suerte. Todos los deslizantes que veis os servirán para darle más o menos Fuerza a la foto, saturación de color, suavidad de la luz, luminosidad, etc,etc.

     Como referencia, hay ciertos ajustes que yo, casi siempre, los pongo más o menos iguales que son:

                        Gamma: 2.0
                        Black Clip: 0.00%
                        White Clip: 5.000%
                        Light Smoothing: 0 ó 1
                        Strength: (por encima de 50, incluso llegando a 100)

     7.- Después de varias horas :-)) de tocar los deslizantes pulsamos OK y nos aparecerá ya el trabajo final en la ventana principal de Photomatix:

     Una vez aquí ya podemos salvar nuetra foto. Yo suelo salvarla en formato TIFF por una sencilla razón. Todos sabemos que el formato JPG es un formato comprimido y cómo lo siguiente que vamos a hacer es abrir el fichero en Photoshop para hacer unos cuantos retoques y volver a salvar y posiblemente lo volvamos a abrir para volver a retocar y salvar... y mas, la calidad de nuestra foto se va deteriorando más y más cuando salvamos puesto que tiene que comprimir cada vez que se salva el fichero corriendo el peligro de que nos salga las típicas bandas del JPG.

     Por tanto File>Save as...>(elejir TIFF) y pulsar Guardar

     8.-  Y ya,como último paso, abro la foto con Photoshop para darle los últimos "toques" como por ejemplo:




          Filtro>Enfocar>Máscara de enfoque...



Espero que os haya servido.



Enrique Izquierdo

Deja un comentario

Ajuste de la nitidez con el filtro Paso Alto

16 marzo, 2016 - General - Comentar -

La primera parte, explica cómo Markus Reugels hace las fotografías de colisiones de gotas de agua.

El post-procesado está en la parte final del video en dónde explica como trata con Photoshop las imagenes obtenidas haciendolas más nítidas con el filtro Paso Alto.. 


Deja un comentario